[Total No. of Questions - 5] [Total No. of Printed Pages - 4] (2125)

15150

B. Tech 5th Semester Examination Electromagnetic Field Theory (OS) EC-5002

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note : Attempt five questions in all selecting one question from each of the Sections A, B, C, and D and all the subparts of questions in Section E.

SECTION - A

1. Test the divergence theorem for the function $\vec{V}=(xy)\hat{i}+(2yz)\hat{j}+(3zx)\hat{k}$. Take as your volume the cube shown in Figure, with side length 2. (20)

OR

[P.T.O.]

2 15150

(5)

Test Stoke's theorem for the function $\vec{V} = (xy)\hat{i} + (2yz)\hat{j} + (3zx)\hat{k}$, using the triangular shaded area of figure. (20)

SECTION - B

- 2. (a) State the Coulomb's law.
 - (b) Find the energy of a uniformly charged spherical shell of total charge q and radius R. (5)
 - (c) Show that the capacitance of an isolated sphere of radius R is $4\pi \in R$ farads. (10)

OR

- (a) Derive an expression for the energy density of the steady magnetic fields. (10)
- (b) The y-and z-axis, respectively, carry filamentary currents 10A along \hat{a}_y and 20A along $-\hat{a}_z$. Find \vec{H} at (-3, 4, 5). (10)

SECTION - C

 (a) What is the continuity equation? Derive it from the basics and describe all its forms. (10) 3 15150

(b) A plane wave travelling in free space has an average poynting vector of 5W/m². Find the average density.

(10)

OR

- (a) What is the significance of Maxwells equation? Mention them in their various forms. (10)
- (b) A conductor with cross-sectional area of 10 cm 2 carries a conduction current 0.2 sin 10 9 t mA. Given that σ =2.5×10 6 s/m and ϵ_r =6, Calculate the magnitude of the displacement current density. (10)

SECTION - D

- 4. (a) Derive the wave equations of a transmission line. Write down their general solution. (10)
 - (b) A transmission line operating at 500 MHz has Z $_0$ = 80 Ω , α =0.04 Np/m, β =1.5 rad/m. Find the line parameters R, L, G and C. (10)

OR

- (a) Derive from its definition, the relation between characteristic impedance and primary constants. (10)
- (b) A 500 Ω lossless line has V_L=10e^{j25°} V, Z_L=50e^{j30°}. Find the current at $\lambda/8$ from the load. (10)

SECTION - E

- (i) Write down the relation for the Cartesian to cylindrical transformation.
 - (ii) Write the expression of gradient in spherical coordinate system.

[P.T.O.]

4 15150

- (iii) Define line charge density.
- (iv) What are the limitation of Gauss law?
- (v) Write the relation between potential V and field intensity $\vec{\mathsf{E}}$.
- (vi) Find the capacitance of a spherical conductor.
- (vii) How much is the energy stored in the capacitor?
- (viii) Write the Ampere's circuital law in differential form.
- (ix) Write the wave equations.
- (2×10=20) What is impedance matching?